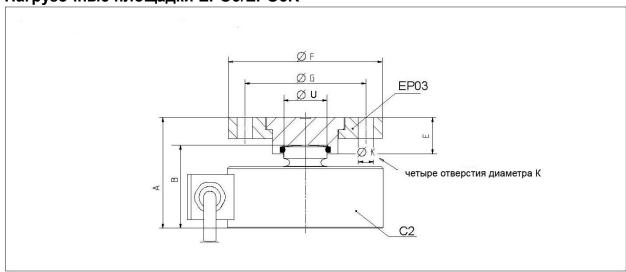

<u>Датчик силы</u>

Особенности

- датчик усилия сжатия из нержавеющих материалов
- небольшая монтажная высота
- номинальные усилия 500 Н ... 200 кН
- класс точности 0,1

Технические характеристики

технические характе	prici	PIINPI										
Тип				C2								
Номинальное усилие	Fnom	кН	0,5	1	2	5	10	20	50	100	200	
Класс точности			0,2	0,2 0,1								
Номинальная												
чувствительность	CHOIL	мВ/В	2									
Относительное отклонение	dc	%	< ± 0,2									
чувствительности при сжатии		,-										
Относительное отклонение	dao	%	< 1									
нулевого сигнала Относительная вариация												
показаний (от 0,2 Fnom до	u	%	< 0,2									
Fnom)			0,10									
Нелинейность	d_{lin}	%	< 0,2				<	0,1				
Влияние изменения												
температуры												
на 10 К на чувствительность	т	%	0.4									
по отношению к номинальной чувствительности	T _{KC}	70					0,1					
Влияние изменения												
температуры на10 К на												
нулевой сигнал по отношению	T _{K0}	%	0,05									
к ном. чувствительности					1							
Влияние эксцентриситета на мм	de	%	± 0,3	± 0,3	±	0,2			± 0,1			
Относительная деформация	uo											
после												
воздействия постоянного	d _{crF+E}	%	< ± 0,06									
усилия в течение 30 мин.			·									
Входное сопротивление	Re	Ом	> 340									
Выходное сопротивление	Ra	Ом	300 400									
Сопротивление изоляции	RIs	ГОм	> 2 · 10 ⁹									
Рекомендуемое напряжение	Uref	В	5									
питания		_	<u> </u>									
Рабочий диапазон напряжения питания	$B_{U,G}$	В	0,5 12									
Номинальный диапазон	_	0.5	40 70									
температур	$B_{t,nom}$	°C	-10+70									
Рабочий диапазон	$B_{t,G}$	°C	-30+85 (120) ²⁾									
температур												
Диапазон температур	$B_{t,S}$	°C	-50 + 85									
хранения		°C	122									
Рекомендуемая температура	tref	C	+23									
Максимальное рабочее усилие	(F _G)	%	130			150						
допустимая нагрузка	(F _L)	%	130 150									
Разрушающее усилие	(F _B)	% %	> 300									
Предельная статическая	(' B)	/3	> 000									
поперечная сила ¹⁾	(F _Q)	%	50									
Номинальный диапазон	Snom	ММ		< 0,1			_	< 0,06				
Основная резонансная	f_{G}	кГц	4,4	8,7	9,7	18,5	19,3	13	14	13	14	
частота			., '	٥,,		. 0,0	. 0,0					
Bec	ı	КГ			0,4			1,8	1,8	3	3	
Отн. допустимая вибрация Frb %				100								
Защита по DIN EN 60529				IP67 (IP68) ³⁾								
Длина кабеля, шестипроводная							6		12			
схема включения		M	3 6					12				
1) относительно точки приложения силы к контактной г				OPENYLOCTIA								


¹⁾ относительно точки приложения силы к контактной поверхности 2) 120° - опциональное исполнение 3) IP68 - опциональное исполнение

Назначение выводов (шестипроводная схема включения)

Аксессуары, заказываются дополнительно:

Нагрузочные площадки EPO3/EPO3R¹⁾

Номинальное усилие		A	В	E	ØF	ØG	ØU	ØK
500N10kN	1-EPO3/200KG	46	30	21	89	70	13	9
20kN , 50kN	1-EPO3R/5T	64	48	21	89	70	25	9
100 kN, 200kN	1-EPO3R/20T	80	60	27,5	110	90	32	13

¹⁾ Нагрузочные площадки EPO3R и EPO3/200kG изготовлены из нержавеющей стали.